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ABSTRACT

Results are presented of an evaluation of several ephemeris representations
for the Multimission Modular Spacecraft (MMS). Primary evaluation criteria
are the accuracy and onboard computational cost, with particular reference to
the Earth Observation Satellite (EOS) mission. Representations in Cartesian
coordinates, equinoctial elements, and orbital quaternions are examined. In
particular, Fourier-power series representations are evaluated primarily for
extrapolation and data compression purposes, and Lagrange and Hermite poly-

nomial representations are evaluated primarily for interpolation purposes.
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SECTION 1 - INTRODUCTION

With the increasing number of spacecraft missions and the accompanying require-
ment for detailed mission design, the need for standardizing spacecraft design is
becoming increasingly critical. As a result, the concept of a Multimission
Modular Spacecraft (MMS)l has been developed. This spacecraft will use stand-
ardized, modularized hardware components and onboard software which will

be adaptable to a variety of missions (References 1, 2).

One of the goals of the MMS design is 72-hour autonomy from ground support.
Autonomy implies the availability of both orbit and attitude information onboard
the spacecraft, primarily to enable the spacecraft to perform attitude control
and secondarily for onboard computation of pointing maneuver controls., The
attitude control will be performed onboard as follows. An onboard digital
processor will compute commands for the attitude control components (such as
reaction wheels) based on the current and the target inertial attitudes. (At
present, all MMS missions are planned to employ three-axis stabilized space-
craft.) The current inertial attitude will be computed using a digital filter

that processes gyro data along with star sensor or Sun sensor data. The target
inertial attitude will be transmitted periodically to the onboard processor by
the ground station2 For star- or Sun-pointing missions, the target attitude

is constant except during slewing maneuvers. However, for Earth-pointing
missions, the target attitude is orbital position dependent. Therefore, the
ground update in this case must include accurate orbital information. Orbital

information is also needed onhoard the spacecraft for other reasons, which

are summarized below.

lFormerly Low Cost Modular Spacecraft (LCMS).

2Alternat;ively, for Earth-pointing missions, it could be computed from an
ephemeris determined onboard from the Global Positioning System (GPS)
signals (Appendix C and Reference 3).
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recurring computations in the attitude control function on EOS, which is performed

in terms of quaternions (Reference 4).

Section 3 is devoted to an examination of the relative computational costs of var-
ious representations. An estimate is made of the computational times which are
required on the NASA Standard Spacecraft Computer (NSSC) for interpolation and
for conversion from the selected type of elements to a form suitable for onboard

use. Core requirements are also discussed based on the results of Section 2.

Section 4 summarizes the results of this study and presents preliminary conclu-

sions.




missions typified by the Earth Observation Satellite (EOS) with a 700-kilometer
altitude and a circular Sun-synchronous orbit, and it must agree with the predicted
orbit to within about 10 kilometers for the star- and Sun-pointing missions typi-
fied by the Gamma Ray Explorer (GRE) and the Solar Maximum Mission (SMM)1
with a 500- to 550-kilometer altitude and a 30-degree inclination circular orbit.
The desirable span over which the representation must maintain this accuracy is

3 to 4 days, with the capability of a 1-day extrapolation (possibly with reduced

accuracy). Appendix A discusses the basis for these accuracy requirements.

In this memorandum, results from an evaluation of several ephemeris represen-

tation techniques are presented addressing the following areas:

° Interpolation accuracy

° Extrapolation accuracy

° Onboard computational simplicity and speed

° Onboard core requirement

o Data transmission from the ground (amount and frequency)
° Standardization and adaptability of the onboard software

° Compatibility with orbit determination algorithms using the Global

Positioning System (GPS) measurements as input (Reference 3)

Results of an evaluation of the accuracy of several ephemeris representations
are presented in Section 2. Schemes that employ classical and equinoctial orbital
elements,2 Cartesian coordinates, and orbital quaternions3 are examined. The

quaternion form of orbit description is motivated by the possibility of reducing the

1Due to a recent scientific data annotation requirement, ephemeris representation
accuracies of 100 meters for the cross~track and radial components and 500 me-
ters for the along-track component are needed. This requirement has not been
accounted for in this document.

2See Equation (3-20) for the definition of equinoctial elements in terms of the clas-
sical elements.

3See Equations (3-18) and (3-19) for the definition of orbital quaternions.
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Primary reason:
] Attitude control (Earth-pointing missions only)

Secondary reasons:

. Computation of maneuvers for pointing antennas at a Tracking and

Data Relay Satellite System (TDRSS) satellite

] Prediction of occultation of a celestial object by the Earth or the

Moon

] Reference to the correct segment of the star catalog (Earth-pointing

missions)

° Computation of stellar or solar aberration factor due to spacecraft
velocity

] Computation of local geomagnetic field for preprocessing star

tracker output and during attitude acquisition using Sun sensors

and magnetometers

° Computation of dynamic misalignments among onboard sensors
° Annotation of picture and other scientific data gathered by payload
sensors

Therefore, the MMS operation will require orbit determination and prediction on
the ground and transmission of a representationl of the predicted orbit to the
satellite. To satisfy MMS mission requirements, the representation must

agree with the predicted orbit to within about 10 meters for the Earth-pointing

lBy a representation is meant a method for approximating the original ephem-~
eris, such as a polynomial or a trigonometric series, with a finite number of
coefficients, Use of a representation permits transmission of a finite number
of terms to the satellite from which the approximate orbital state at any
desired time can be recovered using a relatively simple onboard algorithm.
Neither integration of dynamical equations nor orbit determination from
measurements is called for in this kind of onboard algorithm.



SECTION 2 - EVALUATION OF EPHEMERIS REPRESENTATION ACCURACY

The accuracy of several ephemeris representations is discussed in this section.
Both interpolation and extrapolation accuracies are evaluated by comparison with
a high precision ephemeris. The interpolators examined include Adams, Lagrange,

and He rmite.l

Representations in classical and equinoctial elements are evaluated in Section 2. 1.
The equinoctial elements are a nonsingular set of orbital elements particularly
appropriate for the near-circular orbits under consideration (Reference 5). In
addition, this set simplifies conversion to the quantities needed in the attitude

control algorithm (see Section 3).

Representations in Cartesian coordinates are evaluated in Section 2.2. Previously,
orbital representations of Cartesian coordinates were used successfully to support
other missions (References 6 and 7). Further, representation of the Cartesian
coordinates is expected to be directly compatible with the Global Positioning Sys-

tem (GPS) data (Reference 3 and Appendix C).

Section 2.3 discusses accuracy of an orbital quaternion representation. This rep-
resentation describes the instantaneous orbital attitude and is expected to minimize

the computations required in the EOS attitude control function (see Section 3).
2.1 REPRESENTATIONS USING EQUINOCTIAL AND CLASSICAL ELEMENTS

The accuracy of interpolation and extrapolation on mean elements is evaluated in
Section 2.1.1. Section 2. 1.2 deals with interpolation and extrapolation on oscu-

lating elements.

1All three of these interpolators are related to polynomial representations. A
Lagrange interpolator constrains the polynomial to agree with the original func-
tion at selected grid points, a Hermite interpolator constrains both the function
and its first derivative at all the grid points, while an Adams interpolator con-
strains the function at one grid point and its first derivative at all remaining grid
points.
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Evaluation results of mean element representations (Table 2-1) show that orbital
errors are of the order of the Jy perturbation, i.e., around 7 kilometers, when
mean elements are used.l The extrapolation accuracy is comparable to the inter-
polation accuracy; in fact, they are identical when converted mean elements are
used. Thus, the SMM mission requirement is adequately satisfied by the use of

mean elements.

2.1.2 Interpolation and Extrapolation on Osculating Elements

In view of the results of the previous subsection, it is evident that in order to
satisfy the 10-meter representation accuracy requirement of the Earth Ohser-
vation Satellite (EOS) mission, osculating rather than mean elements should

be used. Due to the short-period effects present in the osculating elements,
the interpolation grid interval in this case will have to be about two orders of
magnitude smaller than that used with mean elements. Consequently, the
number of terms transmitted every 4 days will be on the order of several thou-

sand as compared with the 30 to 40 terms needed for a mean element repre-

sentation. On the other hand, the onboard software for interpolation and con-
version to a form suitable for use in the onboard computations will be nearly
identical for mean and osculating element representations, with the exceptions
that some logic to maintain a moving interpolation grid and some special

extrapolation scheme will be needed when using osculating elements.

An evaluation of interpolation accuracy using osculating elements was carried
out, with emphasis on the EOS mission for which the nominal state vector is
given in Table A-1. The results are presented in Table 2,2, Both total and
horizontal errors are shown; however, only the horizontal errors contribute

to errors in the attitude control of EOS (see Appendix A),

From Table 2.2, it is seen that when using double-precision arithmetic on

the IBM System 360, the major part of the positional error is in the radial

lDouble—precision arithmetic was used on the IBM System 360/75. A final
evaluation must use single~precision arithmetic.
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2.1.1 Interpolation and Extrapolation on Mean Elements

The orbit may be described by mean orbital elements for lower precision mis-
sions, such as star- or Sun-pointing missions with ephemeris representation
accuracy requirements of about 10 kilometers. The advantage of using mean
elements is that the data requirement is very small. Accordingly, with the
Solar Maximum Mission (SMM) in view (see Table A-1 for nominal SMM orbital
elements), the accuracy of interpolation and extrapolation on mean elements,
classical or equinoctial, was evaluated using a variety of interpolators. The in-

terpolators evaluated were:

® Adams 6th and 12th order interpolators (which use one set of ele-

ments and 5 or 11 sets of element rates)
° Lagrange five-point interpolator (which uses five sets of elements)

® Hermite three-point interpolator (which uses three sets of elements

and three sets of element rates)

The mean elements and element rates were obtained from the Variation of Param-
eters (VOP) averaged orbit generator of the Goddard Trajectory Determination
System (GTDS). When the integrated mean elements and rates obtained from the
averaged orbit generator are used as the grid points, they are referred to as in-
tegrated mean elements and rates. Alternatively, a high-precision orbit genera-
tor was used to compute osculating elements at the grid points, which were then
converted to mean elements using the GTDS numerical osculating-to-mean ele-
ment conversion procedure. The mean rates corresponding to these elements
were computed using the VOP averaged orbit generator. Such elements and rates

are referred to as converted mean elements and rates.

In any representation scheme that depends on grid point values, a tradeoff will
occur between the accuracy achievable and the number of terms required, which
is a function of the grid interval. The grid interval was therefore varied in this

and similar studies reported in this section.
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direction, while use of single-precision arithmetic degrades the horizontal
accuracy to a greater extent than the radial accuracy. Both of these observa-
tions may be partially understood by examining the relative fluctuations (from

grid point to grid point) in the equinoctial elements,

The radial error is related to errors in the elements a, h, and k (see Equation
(3-20) for the definition of equinoctial elements in terms of classical elements).
Typical relative fluctuations in these elements for the EOS orbit are about 2 x 103,
5x 101, and 3 x 10'1, respectively. For the elements p, g, and L, which con-
tribute to the horizontal error, typical relative fluctuations are 3 x 10'1, 1x 10‘5,
and 1 x 10"1, respectively. On the average, the fluctuations are most prominent
in h and k. This may be responsible for larger interpolation errors in h and k,
leading to larger radial errors when using double-precision arithmetic. When
using single-precision arithmetic, the truncation has a larger effect on those
elements which are more nearly constant, i.e., q and a (in that order). This

may be responsible for the greater deterioration of the horizontal error when

using single-precision arithmetic.

The computer on board the MMS will use 18~bit words (see Section 3. 2).
Double precision on this computer will be slightly better than single precision

on the IBM System 360. Thus, at first sight it may appear that the interpola-
tion error figures of interest are the errors in the last two columns of

Table 2-2. However, it should be possible to achieve an effective precision
intermediate between single and double precision (on the System 360) by
proper scaling of the numbers involved. For example, a constant number,
corresponding to the average value over all the grid points, could be sub-
tracted, stored in memory, and then added back after interpolation, thereby
effectively utilizing core storage space for the varying part of a number only.
This should help particularly in the case of the element q and to a lesser
extent in a, p, and L. A similar advantage is not available for Cartesian or
quaternion representations, since elements of these representations have a

zero average value over many grid points.
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In view of the above, it may be conjectured that the proper grid spacings for

two-point, three-point, and four-point Hermite interpolation on osculating equi-
noctial elements of the EOS 700-kilometer orbit are about 6, 8, and 10 minutes,
respectively, and require 12K, 9K, and 7.2K words of data, respectively. For
the SMM mission, the grid spacings could be about twice those for the EOS mis-
sion. The Lagrange interpolator was only briefly evaluated, because of its gen-

erally larger error.

For the extrapolation of equinoctial elements, a Fourier-power expansion, i.e.,
a Fourier series with polynomial coefficients, of the form given in Equation (2-2),
is a possible representation (see Appendix B). A brief evaluation of this series,

with the inclusion of the 19 terms, b b b b

00 Por Poz 100 2110 P10’ P1r 20 Pav
b20’ b21, a30, a31, b30, b31, a40, a41, b40, and b41, showed a root mean
square (rms) error of fit of 3. 3 x 102 kilometers in a, rms errors of fit of

7.6 X 10'6, 6.1x 10"6, 6.5x 10"6, and 2.6 x 107° in h, k, p, and q, respec-
tively, and an rms error of fit of 7.2 x 1079 radians in L for the EOS 700-
kilometer orbit with a 4 x 4 gravity field and solar, lunar, and drag effects over

a 1-day data span using an 8-minute data interval.

An estimate of the closeness of this fit may be derived by an approximate trans-
formation of the errors in the equinoctial elements to errors in position. The
along-track position error is roughly the semimajor axis times the angular error
in the longitude L, i.e., approximately 0.5 kilometers. The cross-track error
is roughly the semimajor axis times the error in i or {1, both of which can be
related to errors in p and q. The errors in i and 1 are found to be about

6 x 1076 and 2 x 10'5, respectively, leading to a cross-track error of about

100 meters. The radial error can be related to errors in a, h, and k, result-
ing in an error of about 70 meters. The net rms positional error is therefore
approximately 0. 55 kilometers. Additional evaluation of the extrapolation of
equinoctial elements was not performed in this study; however, T. Feagin of the
University of Tennessee has made such an evaluation (Reference 8), and the re-

sults essentially agree with the results obtained here.
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Another possible method for the extrapolation of osculating equinoctial elements
would be to remove the polynomial behavior by representing the mean element
history by a polynomial as in Section 2.1.1. The difference between the oscu-
lating and the mean elements could then be represented by a simple Fourier

series.
2.2 REPRESENTATIONS USING CARTESIAN COORDINATES

The accuracy of interpolation and extrapolation on inertial Cartesian coordinates

is evaluated in Sections 2.2.1 and 2. 2. 2, respectively.

2.2.1 Interpolation

Given the exact, i.e., predicted, Cartesian coordinates at selected grid points,
approximate values at intermediate points can be obtained by polynomial interpo-
lation. The following interpolators were evaluated with respect to an SMM orbit

and an EOS orbit (see Appendix A for nominal state vectors):

[ Lagrange five-point
° Hermite two-point
° Hermite three-point
) Hermite four-point

Equidistant grid points were used in all interpolators. Results are shown in
Table 2-3. The third column indicates the number of terms, i.e., single words?
on the NSSC, which would have to be transmitted and stored on board per 4-day
span. The last column indicates the maximum root sum square (rss) error2 over
any span. (The error was not uniform and a search was generally necessary to

obtain the maximum. ) It is assumed that interpolation is always restricted to a

1Nominally, double words are needed to represent the terms, but a data com-
pression scheme, discussed in Section 2. 2.2, may permit single words to
represent the terms.

2A’c the time of this evaluation, software to estimate the horizontal component
error was not available. However, spot calculations by hand indicate that this
component is comparable to the radial error.
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span bounded by the two central grid points in the case of the Lagrange five-point
and the Hermite four-point interpolators and by the extreme grid points in the
case of the Hermite two-point and three-point interpolators. Points outside such
spans are dealt with in the next subsection, where extrapolation accuracy is ex-

amined.

It can be seen from the results in Table 2-3 that, in general, higher order inter-
polators require smaller smounts of data, i.e., permit larger spacing, than low-
er order interpolators. A Hermite interpolator permits larger spacing than a
Lagrange interpolator of comparable degree. Further, for the same accuracy
requirement, the higher, relatively drag-free orbit allows larger grid spacing
than the lower, drag-perturbed orbit. However, the actual accuracy require-
ments are quite distinct for the two types of orbits. The desired grid spacing for
an EOS type mission, with a 700-kilometer altitude orbit and a 10-meter repre-
sentation accuracy requirement, is about 1 to 2 minutes, 1 to 2 minutes, 6 to 8
minutes, and 10 to 12 minutes for the Lagrange five-point, Hermite two-point,
Hermite three-point, and Hermite four-point interpolators, respectively. The
corresponding figures for an SMM type mission, assumed to have a 500-kilometer
altitude orbit and a 10-kilometer representation accuracy requirement, are ex-
pected to be about twice the figures for the EOS mission. If the amount of data

(or core) is the main consideration, a high-order Hermite interpolator would be
optimal. However, if onboard computational time is the main criterion, then a
low-order Lagrange or a low-order Hermite interpolator appears preferable (see
Section 3). When both core and time aspects are considered together, a low-order
Hermite interpolator is found to be preferable to a low-order Lagrange interpolator,
since the latter requires more data than the former, while the two require about

the same computational time (see Section 3).

2.2.2 Extrapolation

To permit extrapolation in the absence of grid point data, a simple semiempiri-

cal function is desirable which approximates the time behavior of the Cartesian
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coordinates. An additional advantage of such a function is that the grid data trans-
mitted to the satellite need only consist of differences or residuals of the actual
grid values and the values computed from this extrapolation function. This should
result in considerable savings in the amount of data transmitted, because the mag-
nitude of the residual values would hopefully be several orders smaller than that
of the grid Cartesian coordinates themselves.1 The additional computation needed
for evaluating the function and adding the residuals will be negligible, since it will
only occur once every grid interval (which, as seen in the previous section, is of
the order of a few minutes while the basic attitude control cycle interval is likely

to be only 1/8 to 1/4 of a second).

It is shown in Appendix B that a possible semiempirical extrapolation function for
a Cartesian coordinate, i.e., an inertial component of either position or velocity,

over a span of a few days is of the form

N M
Z Z [aij tj sin (iwt) + b;J{j cos(iu)t)] (2-1)

iz0 j!O

or explicitly,

(boo + bost + bozta"' o)
+ (am + au't - a.n't""-o- ~~~~~ ) sin (t)
+ (bw +b,t+ bm{:a~ e ) eos(wt) (2-2)
+ ("-zo" a,t + a.ut"‘*- ----- ) sin (2wt)

+ (byy + byt + b22t1+ ‘‘‘‘ ) cos (2wt) + oo

which is a Fourier series with polynomial coefficients. Here w is the fundamental

mean orbital frequency. Guidelines for the truncation of this series are discussed

1Specifically, if the position (velocity) component residuals are no larger than 13
kilometers (13 meters/second) in magnitude, then each term can be represented
by a single NSSC word (18 bits) to a 0. 1I-meter (0. 01-centimeters/second) accu~
racy.



in Appendix B. A semiempirical procedure would thus consist of determining the
coefficients appearing in this series by a least-squares fit (on the ground) to the
predicted orbit. The fitting span may be chosen to be the fifth day, when extrapo-
lation is likely to be needed. Over the first 4 days, residuals can be computed
with respect to the obtained solution. The data transmitted to the spacecraft would
consist of the solution (i.e., the coefficients) and the residuals over the first 4

days.

The preceding procedure would be optimal if (a) the residuals transmitted do not
exceed the single word limit and (b) there is no danger of loss or distortion of a
residual in transmission or in onboard handling. If condition (a) is not met, then
transmitting the actual grid point Cartesian coordinates, rather than residuals,
would result in a slight saving in onboard computation cost, or the total span could
be segmented and a separate solution obtained for each segment. If condition (b)
is not met, then the least-squares fit should be carried out over the entire 5-day
span or even possibly over the first 4 days alone, and the expansion given in Equa-
tion (2-2) may have to be carried to more terms. This method is essentially an

extension of the Block 5D ephemeris storage technique (Reference 6).

Results from an evaluation of the extrapolation accuracy of the technique described
above are shown in Table 2~4. Results from a preliminary evaluation using a re-
duced force model and/or eccentricity, which was made primarily to verify the
analysis of Appendix B, are also included here. The last four columns indicate
the root mean square (rms) error in the x, y, and z components in the least-
squares fit to data at a 4-minute grid interva.l,1 and the root sum square (rss) of
these rms errors. The maximum error was not examined; however, this must

be examined before a final choice of an extrapolation function is made. The max-
imum error over the last day must meet the extrapolation accuracy requirement,
while the maximum error (residual) over the first 4 days must meet the single

word requirement.

1Except run (a)~10, where an 8-minute interval was used.
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It can be seen from the results shown in Table 2-4 that the approach described
here is a promising one. The actual terms to be included in the solution must be
determined by further studies using the actual orbital elements of the mission un-
00’ Por Po2 2100 11
appears to be optimal from the pre-

der consideration; however, the set of 13 coefficients, b

3190 P10? P11 Pigr Bppr 330 Py 304 D
liminary results presented here.

30°

The rms positional error for the EOS orbit, over a 1-day span, is about 0.6 kil-
ometers when this set of coefficients is used. This corresponds to a relative
positional error of about 8 x 10~5, Since onboard reference to the Fourier-power
series is infrequent (i.e., at grid points only) and since the computational cost is
relatively small (see Section 3), it should be possible to allow for more terms in
the onboard software than are actually needed in this expansion. If, for a partic-
ular mission, certain higher order terms are found unnecessary or undesirable
due to observability problems, a zero value for these coefficients could be trans-
mitted. Further, if the Fourier-power series itself meets the accuracy require-
ment of the mission (this could be the case for the SMM mission in view of eatry
(a)-10 in Table (2-4)), then residuals need not be transmitted and the onboard
software can be simply modified to bypass the reading and adding of the residuals.

This approach would permit standardization of the onboard software.
2.3 REPRESENTATIONS USING ORBITAL QUATERNIONS

Results of the evaluation of the interpolation and extrapolation accuracy of orbital
quaternions are presented in Sections 2.3.1 and 2. 3. 2, respectively. Because
this representation was motivated by the EOS mission attitude control require-
ments, the relative interpolation accuracy requirement was presumed to be 10"6,
which corresponds to about 10 meters in position (see Appendix A). Certain aux-
iliary quantities, r, r, and possibly v, , the component of velocity perpendicular
to the radius vector, must also be transmitted if position and velocity are to be
recovered (see Section 3). Interpolation and extrapolation on the quantities r

and v, are also evaluated.



2.3.1 Interpolation

Estimates of the interpolation accuracy of quaternions for the EOS mission are
presented in Table 2-5. The horizontal error depends on the interpolation error
in quaternions, while the radial error depends on interpolation on the auxiliary
quantity r. The latter fluctuates between about 7080 kilometers and about 7115
kilometers, while a typical quaternion component fluctuates between 0. 75 and
-0.75. As a result, the horizontal interpolation error on the NSSC will be com-
parable to the single-precision error on the IBM S/360, while the radial error
on the NSSC will be between the single- and double-precision errors on the IBM
S/360. It can be deduced from this discussion that the desired grid spacing for
the EOS mission, when using Hermite two-point, three-point, and four-point in-
terpolation on quaternions, is about 6 minutes, 10 minutes, and 15 minutes, re-
spectively, requiring about 10K, 6K, and 4K words of data, respectively. The
accuracy for an SMM orbit was not evaluated, but it may be conjectured that grid

spacings twice as large as those for the EOS mission can be used.

2.3.2 Extrapolation

A Fourier-power series expansion of the form
(A + Aut +Agt’+ -] sin(%)
+ [B10 +B,t + Butz+---~] cos(i’;'-)
+ [Azo + At + Antz+~-~- ] sin (wt) sin(ﬁ",f) (2-3)

+ [Bm + Bt + Bz.ztz+--'-] sin (wt) cos(—"%_?-

was used for the extrapolation of quaternion components. Justification for this
form is discussed in Appendix B. The use of products such as sin (wt) sin [(wt)/z]
instead of harmonics such as sin [ (Bwt)/ 2] was for programming convenience only;
the two forms are equivalent. For r and v,, Equation (2-2) was used. In eval-

uating the rms error of fit, the relative error with respect to the maximum
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magnitude of the component is relevant. For a typical quaternion component
this magnitude is 0. 75, for r the magnitude is about 7100 kilometers, and for
v, the magnitude is about 7.4 kilometers/second. Table 2-6 shows the results
of the extrapolation evaluation carried out with respect to an EOS (700-kilometer)
orbit and an SMM orbit (see Appendix A, Table A-1, for nominal elements) using
a 4 x 4 gravity model and solar, lunar, and drag effects. The data rate used was
8 minutes as opposed to 4 minutes for Cartesian coordinates (Section 2. 2. 2), in
view of the interpolation results (Section 2.3.1). The last six columns of the
table show the relative errors in the six components. Examination of Table 2-6
shows that a Fourier-power fit to quaternions requires fewer terms than a fit to
Cartesian coordinates to the same accuracy (see Section 2. 2.2). This is due
primarily to the absence of nonharmonic terms in the expansion of quaternions

and is partly due to the larger grid spacing permissible when using quaternions.

The use of the extrapolation function as a data compression scheme requires that
residuals over a 4-day span not exceed the NSSC single word size. This requires
a relative fit of about 10~3 or better. The third entry in Table 2-6 indicates that

this requirement is likely to be met by the Fourier-power representation.
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SECTION 3 - COMPUTATIONAL COST ASPECTS

The computational costs of the various onboard algorithms for interpolation

from ephemeris representations and for conversion of the interpolated quanti-

ties to a form suitable for onboard use are examined in this section. Algo-

rithms for attitude determination and control are not considered. Section 3.1
gives a summary of the algebraic equations involved. Interpolation and extrapo-
lation, as well as conversion algorithms, are included. In Section 3.2, the com-
putational time on the NSSC of the various algorithms is estimated. The estimates
are based only on the arithmetic operations involved; overhead cost is not included.
Nevertheless, the comparative speeds of the various approaches considered can be
derived from these estimates. A discussion of the core requirements of the var-

ious approaches is given in Section 3.3.
3.1 SUMMARY OF ALGORITHMS

The algebraic equations involved in the various interpolation and extrapolation
schemes are summarized in Sections 3.1.1 and 3. 1.2, respectively. Algorithms
for conversion between various forms of orbital description are summarized in
Section 3.1.3. In each case, an attempt is made to write the algorithms so as to

minimize the computational cost.

3.1.1 Interpolation Algorithms

The onboard computations involved in the Lagrange five-point and Hermite two-,
three-, and four-point interpolators are summarized below. In each case, com-
putations that are needed at each grid point and at every interpolation interval

are presented. The critical cost arises from the latter type of computation, since
grid points are likely to be located several hundred (or even possibly several thou-
sand) interpolation intervals apart.1 The algorithms were derived from the defi-

nitions of Lagrange and Hermite interpolators (see footnote on page 2-1).

lFor an EOS mission.
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3.1.1.1 Lagrange Five-Point Interpolator

(a) Grid Computations

For each element and each rate, the following computations are re-

quired:
E= e.3
b= (e,- 8e, + 8e4-e5)
12
c (-el+16e.z-3033+l6e4—es)
- 24 (3-1)

(—el +2e,-2e4+ es-)

6= 12

A (e,-4e, +6e,- 4e4 + €5)
: 24

Here, e stands for any element or rate and the subscripts refer to
the various grid points. The algorithm requires 7n multiplications

and 14n additions, where n is the number of elements or rates.

(b) Interpolation Computations

First, the quantity p = [(t - t3)/g] is computed, where g denotes
the grid interval. Then, for each element or rate, the interpolated

value is obtained as
e = E+p{D+p[C+p(B+pA)]} (3-2)

This computation requires (4n + 1) multiplications and (4n + 1) addi-

tions, where n is the number of elements or rates.
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3.1. 1.2 Hermite Two~-Point Interpolator

(@)

(b)

Grid Computations

For each element-rate pair, the following equations are required:

D=e,

C=gqe, 3-3)
B = 3(81-81)-9(2é1+ é.z)

A= Z(EL‘ez)+g(éi+éz)

The required operations are 3. 2n mul’ciplications1 and 6n additions,

where n is the number of element-rate pairs.

Interpolation Computations

First, p= [(t -t;)/g] is computed. Then, for each element-rate

pair, the following expressions are evaluated:

D+ p[e+p(B+pA)]

[c+p(2B+3pA)]
g

[
n

(3-4)

The required operations are (3j + 4. 1k + 1) multiplications and
(3j + 2k + 1) additions, where j and k are the number of interpo-
lated elements and rates, respectively. (A savings of 2. 1k multipli-

cations is possible if C/g, 2B/g, and 3A/g are stored in memory.)

1
A multiplication or division by a power of 2 is counted as 0. 1 multiplication.



3.1.1.3 Hermite Three-Point Interpolator

(a) Grid Computations

For each element-rate pair, the following computations are per-

formed:
F=e,
= gé,
e,-e
D= e -2e,+e5+ gi%_z_)
(e, +¢&,+8é
C = £leg-e,) - LaTCanB2) (3-5)
. _ 8 glés-2)
B = 2 'f'ez —z" +- -—*—4—$

4

The required operations are 2. 7n multiplications and 17n additions,

where n is the number of element-rate pairs.

(b) Interpolation Computations

First, the quantity p = [(t - tz)/ g] is computed. Then, for each

element-rate pair, the following computations are performed:

e = F+ P{E+p[D+p(c+P(B+PA))]}

3-6
E+p{ZD+p[3C+p(4B+ SpA)]} (3=6)

g

The interpolation operations involve (5j + 7.2k +1) multiplications
and (5j + 4k + 1) additions, where j and k are the number of ele-
ments and rates interpolated, respectively. (A saving of 3.2k mul-
tiplications is possible if E/g, 2D/g, 3C/g, 4B/g, and 5A/g are

stored in memory.)



3.1.1.4 Hermite Four-Point Interpolator

(a) Grid Computations

For each element-rate pair, the following computations are re-

quired:

Vo= (erre, €5,800A + g(e, ¢, ¢,,8,)8 (3=17)

where A and B are the 4 x 6 matrices

[ s -124 s 59 -52 11 |
108 108 108 108 108 108
4 1 0 1 3 1
A 2 4 4 7 "3 3
= s _1._ . 1 (3-8a)
2 1 -7 73 4
25 i o® o 25 -
108 108 108 108 108 108 B
IR A
q 9 % 3 36 36
PR i, 3
B - Ttz 4 (3-8b)
- 1.1 .3 ¢
L0 7 T3 T3 o3
4+ L 1 1 101
|18 36 q 18 18 36_1

When written out explicitly, these equations involve 32n multiplica-
tions and 41n additions, where n is the number of element-rate

pairs.
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(b) Interpolation Computations

First, the quantity p = [(t - t5)/g] is computed. Then, for each

element-rate pair, the following expressions are evaluated:

€=¢g,+ p{g'e2+ p[‘n’L + p(‘{z+ p(¥y +p(Ty+ p(‘{sq-p?é))))]i
' (3-9)
P pi 2% + p[39, + p(495 + p (5% + p (&¥s + Tp%,)))] }

2
9
This algorithm requires (7j + 10. 2k + 1) multiplications and (7j + 5k + 1)

additions, where j and k are the number of interpolated elements and
rates, respectively. (A savings of 5.2k multiplications is possible if

2Y,/g, 3Yy/g, 4Y3/g, 5Y,/g, 6Y5/g, and 7Yg/g are stored in memory.)

3.1.2 EXTRAPOLATION ALGORITHMS

A Fourier-power series has been suggested (see Section 2) as an extrapolation
function for Cartesian coordinates, orbital quaternions, or equinoctial elements.
This series need only be evaluated at grid points, and therefore its computational

cost is not very critical. Nevertheless, for completeness, it is evaluated here.

From a computational point of view, it is advantageous to write such a series as

e = {Boy+t[Bo +t(Boyr ]}
+ {A:o vt [A, +t(Ag++)) 11 sin(ot)
+ {8 +t [By +t(Bpr)) 1} cos(at)
* fAzo +t [Ag vt (Agye= T} sin? (wt) (3-10)
* {520 +1][By +t (Byge))]} sin(ut) eos(ut)
+ {Aso+t [y + t (Asz )T sin®(ut)
+ {Bzo*' t[BM +t (5324----))-"]} sin? (wt) cos (wt)

-*- et
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where e is any element or rate.

This form is obtained by making use of the fact that trigonometric functions of
multiple angles are simple polynomials in the functions of the fundamental angle.
For quaternions, the terms BOj will be absent in the series, and the trigono-
metric functions will be sine and cosine of [(wt)/2] multiplied by various powers

of sin (wt).

This computation requires 2 sines/cosines, [(2N + 1)Mn + 2Nn + 2N - 2] multi-
plications, and {(2N + 1)Mn + 2Nn] additions, where N and M are the highest
harmonic and the highest power of t, respectively, and n is the number of ele-

ments/rates or position/velocity components.

As a concrete example, if N=4, M =3, and n = 1, then 2 sines/cosines, 41 mul-
tiplications, and 35 additions are involved. In another example, if n = 6 and

N and M are the same as in the first example (i.e., N=4and M = 3), then 2
sines/cosines, 216 multiplications, and 210 additions are required. The times
needed on the NSSC for thesc two cases are approximately 14 and 59 milliseconds,

respectively (see Table 3-1, page 3~20).
3.1.3 CONVERSION ALGORITHMS

The attitude control law is expected to be formulated in terms of target quater-
nions (References 4 and 9) (or possibly direction cosines) and target angular vel-
ocities about the body axes, i.e., body rates (Reference 10, Equation (4-5)). A
pointing maneuver, on the other hand, may require the position and velocity vec-
tors, since a relative vector between two objects is involved. Thus, conversion

algorithms among various forms of orbital description may be required.

Described in this subsection are the algorithms for the following conversions:

(1) conversion from Cartesian coordinates to direction cosines, quaternions, and
body rates; (2) conversion from quaternions to Cartesian coordinates and direction
cosines; and (3) conversion from equinoctial elements to quaternions, direction

cosines, body rates, and Cartesian coordinates. It is assumed that orbital

3=7



information is uplinked from the ground. Compatibility with the GPS is discussed

in Appendix C.

3.1.3.1 Computation of Direction Cosines, Quaternions, and Body Rates From
Cartesian Coordinates

3.1.3.1.1 Direction Cosines

The target inertial attitude of an Earth-pointing satellite can be described by a

i
inertial components of the target x, yT» 2T axes. The convention is followed

3 x 3 direction cosine matrix A = (a.j) . The rows of matrix A are simply the

that the target x—axis points away from the center of the Earth towards the sat-

ellite,1 the z..-axis points towards the instantaneous orbit normal, and the yr-

T
axis completes a right-handed system, so that it is approximately along the sat-

ellite velocity vector. The A matrix is given by the following algorithm.

The inverse of the magnitude of the position vector is computed as

- -1/2 63 -1 ( 256 128
Fls (r?) = Egroi{ = tolm + A(% +A(—-2—g- +A(t‘—o -A)))J} (3-11)

where 12 = x2+y2+22), A= (r62)(r2) < 2e, and [% ral] and r(')2 are
stored numbers (ry» which may be chosen to be the mean semimajor axis, is the
approximate value of r). For drag-perturbed orbits, a simple polynomial repre-
sentation for ral may be necessary so that ral will be updated no more than
once every grid point, thus adding negligible cost. The above approximation for
the square root results in a 50 to 75 percent saving in time over conventional
algorithms. The level of truncation shown here will leave relative errors below
2 x 10'11 for an eccentricity below 0.01; this corresponds to double precision

on the NSSC.

1It is assumed in the text that the satellite is to point towards the Earth's center.
The case where it must point towards the subpoint, which is defined to be along
a normal to the ellipsoidal Earth figure, is discussed in Appendix D.
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The orbital angular momentum vector, E‘;, is then computed as follows:

Gy = y2 - 2y ; Gy = #X - x& Gy = xy - yi (3-12)

where x, y, Z, X, y, and z are the inertial Cartesian coordinates of the satellite

position and velocity.

Next, the magnitude squared, G2 , and the inverse magnitude, G'l, are deter-

mined, where G~1 can be found by an algorithm similar to that for r'l. Fora

drag-free satellite, -1 may be assumed to be constant.

The elements of the direction cosine matrix A are computed as follows:

= -1 = ;1 = -1
Q= 2F 75 B2 = 37 By = 27

-1

33 G;G

o
]

-1 -1
Q3 = 646 ;5 03 Gy 6 ;
Uy Qg3 = Q33 Xy (3-13)
Qg = @y Qg3 ~ Qy305

= Q85 ~ Qg 05

The above computations require 36 multiplications and 24 additions.
3.1.3.1.2 Quaternions

The orbital quaternions, denoted here by q = (43> 9o 930 9@ 4) , can be obtained

from the direction cosines by a standard conversion algorithm (Reference 11)

R=1+ay, + a, + a4, q, = (@, - a,) 9

42
9,* Q /4 q, * (ag - o) q, (3-14)
9,7 29,9 9 7 (- %),
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If @ is less than some preselected tolerance ¢, a different combination of the
diagonal elements is selected, and the subsequent equations are changed accord-
ingly. Subroutine CEULER of the Attitude Data Generation (ADGEN) System may

be referred to for a complete algorithm.

The required operations are 1 square root, 4.2 multiplications, and 6 additions

for this algorithm plus 24 additions for the computation of matrix A.

An alternative algorithm which proceeds via equinoctial elements (Reference 5),
rather than via direction cosines, is as follows. First, the quantities re, r‘l, E,
G2, and G~1 are computed as in Section 3.1.3. 1.1, which calls for 22 multipli-
cations and 17 additions. Next, the unit vector 6, along the angular momentum

and equivalent to the \/r} vector in Reference 5, is computed as
A A A -
G, = 6,6 ; G, = 6,6 ; G, = GG (3-15)

A
The vector G is also equivalent to the third row of matrix A.

The remaining computation steps of the algorithm are as follows. The quantity
G, is calculated from

-1/2

G, = (1+6G;) (3-16)

via an expansion similar to that used for r~1 in Equation (3-11). This procedure,
A
is valid since G, = cosi, which is approximately constant and not equal to -1.

The following quantities are then computed as

2
G = G,
A A
P=G6,Gps §= -GyGp (3-17)

X, = x- éx(px-qu-z)
Y, = 3+é’x(q3-px-i)
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-1(2 " -1/2
(L+e") (or s"= (1-¢') if c'®m-1)

¢ (1+6.)G,c" . (1+6;) Gy 5"
1 = z (°r q = ""‘?F‘“"‘) (3-17)
‘. (Cont'd)

q3 = $'q ; cl4= (1+c')q" (or 9" (1~c')q'; qq° S'q")
ql = QQ4* Py 3 qz = Pq, - QQ5

The expressions for the quaternions in Equations (3-17) are equivalent to the fol-

lowing basic expressions in terms of the equinoctial elements p, q, and L:

-1}
q1 = (1+pz+ qz) iz[qcos(LIZ) + psin(le)]
%2

U
q4 = (1+ p7'+ q‘z )-112 eos (L/2)

(1+p*+ qz)-zlz [p cos(L]2) - q sin (L2)]
(3-18)

(1+0%+q2)™" sin(ui2)

which can be derived from the basic definition of the quaternions in terms of the
classical elements (i.e., £} = longitude of the node, & = argument of perigee,
f = true anomaly, and i = inclination) (Reference 11, Equation (4-4)) given below:

q, = sin (i/2) cos (ﬁ—fiﬁ)

sin (i/2) sin (9'—-:)—-#)

Q
)
"

arost) (3-19)

cos (i/2) sin ( 2

Q
vl
"

cos (i/2) cos ('Q'*TM)

o
oo
"
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In this derivation, the following definitions of the equinoctial elements (Refer-
ence 5) are used:

= 4

= e sin(w+Q)
e cos (W+f)

= tan(il2) sinQ)
tan (i/2) eos Q
W+ L+f

(3-20)

re © *x > p
"

where a is the semimajor axis and e is the eccentricity. These elements are
nonsingular for all except highly retrograde orbits, i.e., orbits with inclinations

near 180 degrees.

This method of computation of quaternions requires 1 square root, 47 multipli-
cations, and 31 additions, compared with the 1 square root, 40 multiplications,
and 30 additions required by the first method, which proceeds via the direction

cosine matrix A.

3.1.3.1.3 Computation of Body Rates (In Conjunction With Either Direction
Cosines or Quaternions)

The body rates are given in terms of the classical elements (Reference 10, Equa-
tion (4-5)) as

W, = A sini sin @ef) + Lcos(wed)

Wy = D sini cos (Wef) = § sin(ef) (3-21)

Wy = Qcosi + O+ F

By manipulation, the above expressions can be reduced to

A A -
W, = r"r-l(Gxi + 635 +- Gi'i)GL
wy = 0 (3-22)

G?. G‘1<P__1)2

£
-
L
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A fal A
where GX = g9, Gy = ag9 and Gz = agq- The preceding results can also be

obtained by noting that w, must equal the orbital angular momentum, G, divided
:.‘ A

by r2 , and that the effect of perturbations is to produce a torque r(r.G) along

the orbital y-axis, which should result in a precession of the orbit plane about the

o A
x-axis at a rate &, = (torque)/(angular momentum) = rT. G/G.
Computation of the body rates requires 8 multiplications and 2 additions.

3.1.3.2 Computations of Direction Cosines, Body Rates, and Cartesian
Coordinates From Quaternions

The algorithms for conversion from quaternions to direction cosines, body rates,
and Cartesian coordinates are described in this subsection. Conversion to
Cartesian coordinates requires certain additional quantities apart from quater-

nions, as is shown below.
3.1.3.2.1 Conversion to Direction Cosines From Quaternions

The following equations (see Reference 10, Equation (4~15)) are used to convert

from quaternions to direction cosines:

- a2 2 2 2
ail-Qi-qZ-Q3+Q4

2(q,9, + 4,4,)
0z = 2(9,4,- 9,9,
0y = 209,49, - 3,9,)
- cl: - q: -q2+ g: (3-23)
Oy = z(gzg3 +9.9.)
asy = 2(9,9, + 4,94)
2(q,9:- 4,9,

g - ra vl

IS

w

ey
0

5]
o
o

"

The operations required are 10.6 multiplications and 15 additions.
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3.1.3.2.2 Conversion to Body Rates From Quaternions

Assuming that quaternion rates are available, the following equations (see Ref-
erence 10, Equation (4-16)) can be used to convert from quaternions to body

rates:
“"x = Z(%qiz * %5 c.lz_ - qzé‘g- qié4)

2(- %zﬁu * 94 ‘.lz * qu.&os - 9,,,‘14) = 0" (3-24)
z(%zéi - q}’.é!z * %4%5 - %344)

Wy

we

The operations required are 8.2 multiplications and 6 additions.
3.1.3.2.3 Conversion to Cartesian Coordinates From Quaternions

In order to convert from quaternions to Cartesian coordinates, it is necessary to
have available three additional independent quantities which can be chosen to be

r, r, and v, (where v, is defined to be the component of velocity perpendicular

to the radius vector and is given in terms of classical elemeats by v, = Jua(i-e€9/r,

where u = the gravitational constant).

First, the first six direction cosines must be found using the first six of the nine

equations given by Equation (3-23). Then

A=rdyy YT ran) i rag
(3-25)

POy + VB Yy = rhpt ViR, ; 2= rlgt V0,

X
give the inertial position and velocity components. This involves 19. 4 multipli-

cations and 13 additions (including the computation of the six direction cosines).

The above equations are needed when only quaternions (but not their rates) are

available, i.e., if a Lagrange interpolator is used. If a Hermite interpolator is

*This is true only for geocentric rates; for geodetic rates, the equation must be
evaluated (see Appendix D).
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used, quaternion rates ’q" will also be available. In this case, the need for v,

can be dispensed with, as follows:
a’ll =4 (q»:l.éu, + q‘qq;q)
12 - Z(Q,lfl,z + qn_"h * %3‘%4 + Qa0
b"i'ﬁ = 2'(%16!:3 + Q‘sql - %2Q4 - 9»4 Qz)

X = ra.n + r-a.u-, y = oroag, + V‘Q.’_z', 2 = v'a.ua- Lalt PO

p-
1]

(3-26)

Here, four rates, as opposed to one v » must be obtained by interpolation, but
these rates are also needed in the computation of @. These operations require

21. 5 multiplications and 12 additions.

Savings (overlap) occur when A, &, T, and T are found together: six direction

cosines need not be found twice, saving 10.4 multiplications and 10 additions.

With the second method for finding ’i"‘, the overlap is 12. 2 multiplications and

5 additions (8.2 multiplications and 5 additions if & is not found).

3.1.3.3 Computation of Quaternions, Body Rates, Direction Cosines, and
Cartesian Coordinates From Equinoctial Elements

Algorithms for conversion from equinoctial elements to quaternions, body rates,

direction cosines, and Cartesian coordinates are described in this subsection.
3.1.3.3.1 Conversion to Quaternions From Equinoctial Elements

The equinoctial elements are defined in terms of classical elements as in Equa-
tion (3-20). The expressions for the quaternions given in Equation (3-18) lead
to the following algorithms:
L =L/2
s = sinl'
¢ = cosl’
-1/2
A"z (L+psgh) (3-27)
gy = sA’
g = cA’
%, = 3% * P
92 * P34~ 943
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The quantity A’ is evaluated by an expansion similar to that given for r~1 in
Equation (3-11); this expansion is valid since A’ = cos (i/2) . The preceding com-

putations require 2 sines/cosines, 13.1 multiplications, and 9 additions.

3.1.3.3.2 Conversion to Body Rates (In Conjunction With Quaternions) From
Equinoctial Elements

Assuming that p, g, and L are available, the following computations will give

the body rates:

’ z
s’ = 2s¢ ¢’ = 2e%-1; A" = 2(A"

w, = A“(ps’' + qc")

* PS™+ 4 (3-28)
oy = A"(fe’ - §s) = OF

Wy = I..+A"(pé,-q’p)

The operations required are 9.3 multiplications and 4 additions when computed

in conjunction with the quaternions.
3.1.3.3.3 Conversion to Direction Cosines From Equinoctial Elements

The following equations are used to convert from equinoctial elements to direction

cosines:
' = sinl
e'= eoslL
Q” 1:‘P 9 (3-29)
Q. = Q Bo -1
B = By{1-Q'[t-Q"(1-Q"(1-@M]}

Here, BO is the nominal value of B= (1 + p2 + q2)-1 and is stored in the com-

puter memory. It may be periodically updated to account for any secular change

in the inclination.

*This is valid for geocentric control only; the geodetic case is discussed in Ap-
pendix D.
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The components of the A matrix are computed as follows:

0y = 2pB; 03, = -29B; a5 = (2-Q)B

Qpy = S Qg = Clayy

Quy = -C'dyy - S'ay,

0y, = ¢ +ply (3-30)

0.12 = 5' - %0.1-5
Qz1 < Pazb - S’
Qg = el - Qg
Operations required are 2 sines/cosines, 18.2 multiplications, and 14 additions.

3.1.3.3.4 Conversion to Body Rates (In Conjunction With Direction Cosines)
From Equinoctial Elements

The following equations are used to convert from equinoctial elements to body

rates (in conjunction with the direction cosines):

w, = 2B(ps' + qe')
wy = 28(pc'-qs’) = OF (3-31)
w, = L+ 28(pg - qp)

This requires 6.2 multiplications and 3 additions when computed in conjunction

with direction cosines.
3.1.3.3.5 Conversion to Cartesian Coordinates From Equinoctial Elements

The following algorithm is used to convert from equinoctial elements to Cartesian

coordinates:
C = a(i1-h%- k%)
D = CEj-1 (3-32)
' (4
E = EO{E + o[- +o(2-0)]}

*This is valid for geocentric control only; the geodetic case is discussed in Ap-
pendix D.
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' 15 ’
where E = ‘\/a,(l-hz-kz) = ¢/a(1-e*) and E = 7 E; . (Eyand E,
are stored nominial values.) The expansion above ignores only terms of the

order Jg ~10"12 while including terms of the order Jg ~1077.

The remaining steps of the algorithm to convert from equinoctial elements to

Cartesian coordinates follow:

¢ = cosl

s = sinl

F = ke'+hs’

r o= C{1-F[1-F(1-F(1-F(21-FN)]}
Py * P:

92 * 9

QY = (Lep?+q%)B,-1

B = B,{1-Q"[1-Q(1-Q"(1-@)]}
B' = rB

X, = ¢'B ¥, = s'8 (3-33)
S = yfu EB

Xi = -S(h+s'); '1’;_= S(k+e")

fLo7 1opprqy; fo= 2pq; fy= -2p
3, = f2s 9, L*P-q2i 957 29
A= fXrg,Y

y = fX{ "q'z"’;

2 o= F3X 957,

x = f X + gt'f;

y = ’czi(lz."' gzq;.

£ = 'Fsi(;_ > 33‘?1

The operations required are 2 sines/cosines, 41.3 multiplications, and 31 addi-
tions. Savings (overlap) occur when q, @, T, 'f, or A, &, T, T are found to-
gether. In these cases, s', ¢', and B need not be recomputed, which saves 2
sines/cosines, 8 multiplications, and 8 additions. (If @ is not found, the savings

are 2 sines/cosines, 5 multiplications, and 5 additions.)
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3.2 COMPUTATIONAL TIME ESTIMATES

The onboard computational time needed for interpolation and for conversion of the
orbital information to a form suitable for use in attitude control and pointing man-
euvers is estimated in this section for a variety of ephemeris representations.

The estimates reflect only the arithmetic operations as listed in the previous sub-
sections; overhead was not included. The characteristics of the onboard processor
which are assumed for these estimates are shown in Table 3-1. (The numbers
given in this table are nearly the same as, though not identical to, those in Ref-

erence 4.)

Due to the 18-bit word length, which permits only about a 10~° relative accuracy,
it is assumed that all operations will be performed in double precision. This
yields a relative accuracy of 10710 t0 10-11, This is considerably above that
required, which is about 10”8 for intermediate computations and 106 for the
final results, such as control corrections. Advantage should be taken of this
intermediate precision requirement wherever possible (e.g., in expanding roots).

This was already done to some extent in writing the algorithms in Section 3. 1.

The relevant time estimates are shown in Table 3-2. The numbers listed repre-
sent interpolation cycle times in milliseconds. Computations at grid points are
not included here because they are infrequent. (These could amount to about 50

to 150 milliseconds per grid interval.)

It is seen from Table 3-2 that if quaternions or direction cosines and body rates
are the only quantities required in the attitude control law, it is most efficient to
represent the orbit in quaternions, with equinoctial elements offering nearly as
efficient a representation and Cartesian coordinates being considerably slower.
Conversions to position-velocity for pointing maneuvers are infrequent and there-
fore should not be a critical factor. (If they were, the Cartesian coordinates
would be more suitable.) If, on the other hand, the attitude control law itself

requires position and velocity,1 then Cartesian coordinates are competitive with

1This could be the case if geodetic, rather than geocentric, stabilization is de-
sired (Appendix D).
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Table 3-1. Characteristics of the Onboard Processor (NSSC)

WORD LENGTH -~ 18 Bits

INSTRUCTION WORD -- 18 Bits

DATA FLOW -~ Parallel

DATA TYPE -~ Fixed Point, Fraction, 2's Complement
NUMBER OF INSTRUCTIONS -~ 55

CLOCK RATE/CYCLE TIME -- 800 kHz/1. 25 us*
OPERATIONS PER SECOND -- 200K

NUMBER OF INDEX REGISTERS == 1

ACCUMULATOR -- Double Length

INTERRUPTS -- 16 Multilevel

DIRECT MEMORY ACCESS (DMA) -- 16 Devices/channel
MAXIMUM I/O RATE -- 66K Words/second

COMMAND LOAD AND DUMP -- 300K Words/second
MEMORY CAPABILITY -- 4K Word Modules to 64K Words
DIRECT ADDRESSING -- 4K Words/Page

TECHNOLOGY -- TTL/LSI

SIZE/WEIGHT -- (112 cubic inches)/(3 pounds)
OPERATION TIMES:

Operation Single Precision Double Precision
Add/Subtract 20 us 65 us
Multiply' 42 us 210 us
Divide' 68 us 3 ms*
Sine/Cosine .35 ms 1.5 ms
Square Root/ .66 ms 3-6 ms
Inverse Square Root (Nominal 5 ms)

* (1S = microsecond; ms = millisecond
An exception is the case of multiplication or division by powers of 2; in this
case, a single-precision operation will take 4.2 us and a double-precision
operation will take 21 us.
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both quaternions and equinoctial elements (see the last four columns in Table 3-2).

In any event, the final choice among the various forms will be governed addition-
ally by the data transmission requirement. This aspect is discussed in Section

3.3.
3.3 DISCUSSION OF CORE REQUIREMENTS

The current design for the onboard processor does not include any peripheral
storage devices. Hence, any data transmitted from the ground will be stored in
the main memory and must be included in the onboard core storage cost. The
core requirements of various representations are roughly estimated below. Core
required for the coding of instructions is not estimated, but this should be negli-
gible compared with the data storage requirements, except when mean elements

are used where the data requirement is also negligible.

The number of words required for a 4-day span will approximately equal the num-
ber of words per grid point multiplied by 6K and divided by the grid spacing in
minutes. The number of words per grid point is 10, 9, and 12 for the quaternion,
Cartesian, and equinoctial representations, respectively. It is assumed that
each term is a single-precision word representing a residual from an extrapola-
tion function (see Section 2.2.2). Based on the results of the evaluation in Sec-
tion 2, the core estimates shown in Table 3-3 for the EOS and SMM type missions
can be derived. It is assumed here that position, velocity, and body rates, as
well as direction cosines (or quaternions), are required on board. If position and
velocity are not needed, a core saving of 0 percent, 20 percent, and 50 percent

is achieved in the case of Cartesian, quaternion, and equinoctial representations,

respectively.

Based on the preliminary results obtained, the quaternion representation is opti-
mal for the EOS mission from the point of view of core requirement and time
requirement (as discussed in the previous section). The grid spacings shown in
Table 3-3 were estimated in Section 2, taking into account scaling information.

Additional study of scaling and of residual magnitude optimization will be required



Table 3-3.

Approximate Core Estimates

?;;:a Accuracy Representation Imierpn:llsfion S(przf;;lg ‘Z(;;.:;s/
Type
== —— —_— e ey
EOS | 10-meter Quaternion 2-point 6 10K
(horizontal) 3-point 10 6K
4-point 15 4K
Cartesian 2-point 2 27K
3-point 6 9K
4-point 12 4.5K
Equinoctial 2-point 6 12K
3-point 8 9K
4-point 10 7.2K
SMM | 10-kilometer | Quaternion 2-point 12 5K °
(total) 3-point 20 3KP
4-point 30 2K®
Cartesian 2-point 4 13.5K°
3-point 12 4.5K°
4-point 24 2. 3K°
Equinoctial 2-point 1440 120°
3-point 1440 120°
4-point 1440 120°

3See Appendix A, Table A-1, for the nominal orbital elements.

This is a rough estimate, based on the assumption that grid spacing will be
twice the corresponding spacing for the EOS mission.
reduced to 1K words or less if residuals are not transmitted at all.

These figures can be

° Mean elements can be used in this case (see Section 2.1.1).



before a more exact comparison can be made of the core requirements of the

three representations.

For the SMM mission, the mean element representation is clearly optimal.1 If
uniformity of software among different MMS missions is desired, then an equi-
noctial element representation could be used in which short-periodic variations
(i.e., osculating-minus-mean elements) could be added on for the EOS mission.
If optimization of the EOS mission is an important additional factor, a quaternion
representation may be preferable. The extra cost to the SMM mission will then
be the time cost of evaluating a Fourier-power series at grid points, which may
turn out to be negligible compared with the overall available time budget and the
core cost of storing harmonic coefficients and residuals. The coefficients should
require 1K or fewer words, while the residuals may require an additional 3K to
5K words. However, if the residuals are not used at all, the net core require-
ment would be only that of the harmonic coefficients, i.e., 1K words or less.
This possibility arises since the Fourier-power series fits the SMM ephemerides
to approximately a 15-kilometer accuracy, and further tuning of the series could
possibly reduce this error to less than 10 kilometers. In this case, the question
of whether to perform a direct series evaluation or to use grid point series eval-
uation and Hermite interpolation remains open; the answer will depend on the

desired frequency of orbital computation.

lHowever. when the stringent requirement mentioned in footnote 1 on page 1-3
is considered, a Cartesian representation is found to be optimal for the SMM
mission.



SECTION 4 - SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

A summary of activities, a summary of results, preliminary conclusions, and
recommendations for additional investigation are presented in Sections 4.1, 4.2,

4.3, and 4.4, respectively.
4.1 SUMMARY OF ACTIVITIES

Evaluation of the accuracy and onboard computational cost of several ephemeris
representations for the Multimission Modular Spacecraft (MMS) was carried out.
Fourier-power and Hermite polynomial representations in Cartesian coordinates,
equinoctial elements, and orbital quaternions were examined. Mission constraints
of an Earth Observation Satellite (EOS) mission, which are the most stringent a-
mong all the MMS missions, were used as the primary evaluation guideline. How-
ever, applicability of the ephemeris techniques to other MMS missions, such as
the Solar Maximum Mission (SMM), was also examined. Related aspects, such

as geodetic control requirements and compatibility with navigation using the Global

Positioning System, were also examined briefly.
4.2 SUMMARY OF RESULTS
The following results were derived from this evaluation:

® Although a Fourier-power series is a reasonable representation of

either Cartesian, quaternion, or equinoctial element histories over
the span of interest (4-5 days), the accuracy of this representation

is not adequate to meet the EOS mission requirement and is barely
adequate for the SMM mission. Nevertheless, this may be a useful
representation for extrapolation purposes, as well as a means of data
compression when used in conjunction with polynomial interpolation
between closely-spaced grid points. Specifically, a 1-day extrapola-
tion accuracy of about 0.5 kilometers (root mean square (rms)) was

achieved for the EOS mission. Further reduction in this error may
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be possible by the inclusion of more terms in the Fourier-power ex-
pansion than those used in this study. The data compression is a-
chieved by transmitting residuals from the Fourier-power series

(and coefficients describing the series) instead of actual grid point
element values. Indications are that single words on the NASA Stand-
ard Spacecraft Computer {(NSSC) would suffice to describe the resid-
uals, while double words would be necessary to describe the original

elements in order to maintain the desired accuracy of representation.

° A Hermite interpolator that uses exact elements and their rates at
closely~-spaced grid points is capable of achieving the desired repre-
sentation accuracy. Specifically, the allowable grid spacing for a
3-point Hermite interpolator is around 8 minutes (slightly smaller
for Cartesian coordinates and slightly larger for quaternions) for
meeting the EOS accuracy requirement. The amount of data required
to be transmitted and stored on board for a 3-day upload is around 6K
words (somewhat smaller for quaternions and somewhat larger for
Cartesian coordinates and equinoctial elements). The word require-
ment for the SMM mission is estimated to be about half the above, and
is possibly below 1K words if the Fourier-power series can be tuned

so as not to require residuals at all.l For the SMM mission, in fact,

polynomial interpolation on mean equinoctial elements is optimal, as

this meets the accuracy requirement and uses only 120 words of data.l

° The computational time cost of the Fourier-power series is fairly
large when judged in relation to the attitude control cycle. (This is
a second reason for excluding the use of such a series in the attitude
control cycle.) However, if used at grid points only, the total time
contribution of the computation of this series is negligible. The on-

board time cost of Hermite interpolation and conversion to quantities

1However, see footnote 1 on page 1-3.
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needed for the attitude control function is less for quaternion and
equinoctial representations (15 to 20 milliseconds)1 than for a
Cartesian representation (about 30 milliseconds). Of course, the
relative costs are reversed if Cartesian position and velocity are
required (e.g., for scientific data annotation). In this case, the
cost is about 10 milliseconds for a Cartesian representation and
about 20 to 25 milliseconds when using either of the other two repre-
sentations. If quaternions, body rates, and position and velocity
are desired together (at the same frequency), then a quaternion
representation is about 10 milliseconds faster than either of the

other two representations.

A quaternion representation is approximately three to four times
faster than either Cartesian coordinates or equinoctial representa-

tion if geodetic control is desired.

4.3 CONCLUSIONS

In view of the results cited above, the following may be concluded:

From the point of view of optimizing the onboard operétions of the
EOS mission, the preferred ephemeris algorithm uses a quaternion

representation in the form of a Fourier-power series and uses re-
siduals at grid points spaced a few minutes apart (with low-order

Hermitian interpolation between the grid points).

Use of quaternion representation for the EOS mission not only opti-
mizes the onboard computational time and core storage needs, but
is also the best representation for describing geodetic control. In
addition, it can be made compatible with navigation algorithms that

use the GPS signals as input.

1The numbers quoted here and in the rest of this section assume the use of a
three-point Hermite interpolator.
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Uniformity of software among different MMS missions is achievable
by the use of the quaternion representation. However, optimality is
not necessarily achieved thereby with respect to other MMS missions,
such as the SMM, particularly if residuals cannot be dispensed with.
To achieve near-uniformity and near-optimality with respect to all
missions, an equinoctial element representation is ideal, because
mean elements and a large grid spacing (~1 day) could be used for

1and osculating elements and a relatively small

an SMM type mission,
grid spacing (~ few minutes) could be used for an EOS type mission.
Of course, if uniformity of software is not a requirement, then qua-
ternions could be used for EOS, and mean equinoctial elements2

could be used for SMM.

4.4 RECOMMENDATIONS

Areas for additional investigation of ephemeris storage techniques for the MMS

are as follows:

Since only a limited investigation of the Fourier-power series repre-
sentation was possible in the time frame of the present study, an ad-
ditional evaluation, using more terms in the series, is desirable so
as to minimize the extrapolation error and to validate the assumption
that single-precision NSSC words will suffice for describing the re-
siduals. Further study of the relative importance of the harmonic
and polynomial terms may be worthwhile. It would also be desirable
to investigate methods of reducing the number of coefficients to be
determined, without sacrificing accuracy of fit. This may be possible
by making the series more analytical. For example, using the meth-

ods outlined in Appendix B, explicit time behavior arising via the Jo

1However, see footnote 1 on page 1-3.

2Cartesian coordinates could also be used (in view of footnote 1 on page 1-3).



secular variations in {1, w, etc., may be modeled directly using the
analytical orbit propagation theory of Brouwer-Lyddane. Then, only
the small departures from this theory need be modeled via polynomial
and higher harmonic terms. A further reduction in the number of
coefficients may be possible by using independent estimates of the secu-
lar rates (such as f).), derived from a Keplerian Variation of Param-

eters (VOP) orbit generator.

For the extrapolation of equinoctial elements, a pure Fourier series
analysis of osculating minus mean elements would be worth investi~
gating. Again, analytical computation of J, short-period oscillations
should be investigated, so as to minimize the number of empirically
determined coefficients. Another candidate representation for oscu-
lating minus mean behavior is a spline fit within one orbital period,
with a varying scale to account for the secularly decaying orbital

period.

Considerable effort remains to be expended in optimizing the selected
software for actual onboard use. Proper scaling of the quantities in-
volved and other techniques for maximizing the accuracy of the NSSC
arithmetic need to be investigated. Candidate ephemeris represen-
tations should be reevaluated after effecting such optimization, and

in the framework of NSSC precision.

Investigation should be continued of onboard orbit determination algo-
rithms using the Global Positioning System (GPS) and of their com~

patibility with the onboard ephemeris storage software adopted.



APPENDIX A ~ ORBITAL ACCURACY REQUIREMENTS
FOR SOME MMS MISSIONS

Most of the initial MMS missions will fall into three basic categories: (1) low-
altitude Earth-pointing missions, typified by the Sun-synchronous Earth Obser-
vation Satellite (EOS) orbit, with mean altitudes in the range of 700 to 900 kilo-
meters, inclinations of about 99 degrees, and eccentricities of approximately
0.002; (2) star- or Sun-pointing missions, typified by the Solar Maximum Mis-
sion (SMM) and the Gamma Ray Explorer (GRE) orbits, with mean altitudes of
about 450 to 550 kilometers, inclinations of about 30 degrees, and eccentricities
of about 0.02; and (3) geosynchronous Earth-pointing missions, typified by the
Synchronous Earth Observatory Satellite (SEOS) orbit.

The prime motivation for imposing an ephemeris accuracy requirement on the
EOS mission is to obtain a desired geographic registration accuracy and stabil-
ity of the Earth pictures taken by the payload sensors. Any uncertainty in the
knowledge of the ephemeris contributes in two distinct ways to the picture regi~-

stration uncertainty:

[ Direct contribution to uncertainty in the location of the payload sen-
sor
° Indirect contribution due to uncertainty in the pointing direction of

the payload sensor arising from the fact that the ephemeris informa-
tion is used in the attitude control system. Figure A-1 illustrates

these two contributions.

The direct contribution is given by the horizontal component of the spacecraft
ephemeris uncertainty (i.e., by the projection of the error ellipsoid in the along-
track/cross-track plane), reduced by the ratio of the Earth's radius to the space-
craft semimajor axis, a factor of about 0.9 (this contribution is arc AC in the

figure).
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Figure A-1, Geometry of Earth Picture Registration Uncertainty



The indirect contribution, produced by uncertainty in the target direction, is
given by the product of the altitude and the uncertainty in the pointing direction.
Assuming for simplicity a spherical Earth and an Earth~center-pointing attitude
control law, the pointing uncertainty due to the ephemeris uncertainty is the ratio
of the horizontal ephemeris uncertainty and the spacecraft semimajor axis (i.e.,
in Figure A-1, A= DE/EF). Thus, this contribution to the picture registration
uncertainty equals the horizontal ephemeris uncertainty scaled down by the ratio
of the spacecraft altitude to the semimajor axis, which is roughly a factor of 0. 1.
(This contribution is CB in the figure and equals DB multiplied by 4, or approx-
imately 0.1 ED.)

If the same ephemerides are used during picture registration as in the attitude
control, the net contribution to the picture registration uncertainty is the sum
(not a root-sum=-square) of the two contributions, i.e., it is given by an ellipse
of the same size as the horizontal ephemeris uncertainty. (The net contribution

is shown as AB in Figure A-1, and it nearly equals ED.)

In principle, in the absence of operational constraints, unless the ephemeris is
determined on board using GPS input (for example), it is not essential that the
same ephemerides be used on the ground as on board. There are at least two

ways in which the two ephemerides could differ:

° The onboard interpolator need not be as accurate as an interpolator
on the ground. For example, the picture registration program could
read an ORBIT File using an accurate Adams interpolator, while the
onboard software may use a Hermite interpolator with a large grid

spacing.

° The ephemerides could conceivably be redetermined during picture
registration using a data span (tracking and/or landmark) that covers
the picture instead of depending on the predicted orbit that was used

on board.



In such cases, the net contribution to the picture registration uncertainty is the
root-sum=-square of the direct and the indirect contributions. In this case, a
relatively large onboard ephemeris error can be tolerated, due to the factor of

0.1 mentioned previously.

As a concrete example, if the horizontal ephemeris uncertainty is 100 meters
during picture registration but is 200 meters during onboard attitude control
(corresponding to a 6-arc second pointing error), the net registration uncertainty
contribution is \/ 902 + 202 = 92 meters. A more conservative estimate that
accounts for correlations is \/ 1002 + 102 = 101 meters. Neither of these fig-
ures includes the contribution arising from attitude sensor/bias uncertainties.

Assuming an 1l-arc second figure, an additional contribution of 35 meters must

be allowed for, leading to a net uncertainty of V 1012 + 352 = 106 meters.

Throughout the above discussion, the nominal attitude is assumed to be used during
picture registration. If the actual attitude is used, the errors are further reduced.
In summary, the onboard interpolator can yield considerable errors as long as
these errors are not allowed to enter the picture registration programs directly.
However, the preferred modes of mission operation foreseen (Reference 12) do

not call for redetermination of orbit or attitude on the ground; these parameters
are to be telemetered by the spacecraft to the users along with scientific data such
as the digital Earth-picture data. In view of this, the onboard ephemeris accuracy
requirement for EOS is primarily governed by the picture registration require-
ment (since the situation described in Figure A-1 holds). This requirement is
likely to be in the range of 30 to 100 meters. The prediction accuracy over a
4-day span, obtained using ground processing, may be expected to be around 100
meters for the EOS orbit (Reference 13). Thus, the desired ephemeris represen-
tation accuracy is an order of magnitude better, or 10 meters (0.0001 degree or
106 relative error). In view of the preceding discussion, this requirement may

be assumed to hold for the horizontal positional component.



In the case of the SMM and GRE missions, the main purpose of the orbital infor-
mation is to point an antenna at a TDRSS satellite. Because the TDRSS satellite
will be at a geosynchronous altitude, a 0. 1-degree pointing accuracy requires
about a 70-kilometer position accuracy. Allowing for a factor of 3, the orbital
accuracy requirement may be taken to be about 20 kilometers. Because the SMM
and GRE orbits are more heavily drag perturbed than the EOS orbits, achievable
prediction errors are much larger, i.e., several kilometers over a 4-day span
(Reference 14). Thus, the representation accuracy need only be about 10 kilo-

meters (0.1 degree or 1073 relative error) in this case.1

The evaluation in this study was carried out with respect to an SMM and an EOS?

1 and 10-meter (horizontal) represen-

type orbits, keeping in mind 10-kilometer
tation accuracy requirements, respectively. The epoch orbital elements and

spacecraft parameters used in this evaluation are shown in Table A-1.

1However, see footnote 1 on page 1-3. The requirement mentioned there is as
follows. The prediction accuracy over a 3-day span has been estimated in
Reference 14 to be about 1 kilometer in the radial and cross-track directions
and about 5 kilometers in the along-track component. Assuming that scientific
data are to be annotated with the above accuracy, the interpolation accuracy
requirement is an order of magnitude better, i.e., 100 meters in the radial
and cross=track directions and 500 meters in the along~-track component.

2In the initial phases of this study, the EOS orbit was assumed to be a 900-
kilometer altitude orbit, while in the final phases a 700-kilometer altitude was
assumed. These two orbits are referred to as EOS (900 km) and EOS (700 km)
orbits, respectively, in this document.
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APPENDIX B - DISCUSSION OF SEMIANALYTIC
EXTRAPOLATION FUNCTIONS

For a small eccentricity orbit, perturbed by J 9 alone, an expansion of Cartesian
coordinates may be carried out in powers of e and of J5, and the expansion may
be truncated at the desired level of accuracy. This process will help determine

the required number of harmonics in an ephemeris representation.

Noting that the Cartesian components in the orbital plane are simply rcosf and
rsinf, where f is the true anomaly, the inertial Cartesian coordinates can be

written as

xr
o
- -1 -1, -1 r o
X = aRy (Q) RI(i) Ry (W) | ¢ sin¥ (B-1)

where, for example, R3(.D.) denotes a rotation angle fl around the third axis.

The orbit plane coordinates can be expanded in a power series in the eccentricity

(see Reference 15, pages 79 and 80), which to order e is

r = -3 .3 .2 £ 3 o2
st =-5e +(1-ge*)cosd + 7 cos2L + geeos3L (B-2)
7:-_ sinf = (i-gse") sind + -:— sin 24 « % e? sin3g
The mean anomaly, £, is related to time as (Reference 16)
L= 2,+ w0t + w T, sin(2w0,t+q) (B-3)

ignoring J% and higher effects, where w,(the mean orbital frequency), &y, Zo,

and q are constants.

The factors involving 2, «, and £l may also be modeled to the first power in J,,

and the net result may be symbolically written as an amplitude as (Reference 16)




A=A, + AT, sin2e (B-4)

Combining the preceding equations, a Cartesian component may be symbolically

written as

X~ (Ao + Ay J, sin Zl)(boe + blsin.e. +b,esin2l + bse"sinsz.) (B-5a)

X~ [Ay+ AL, sin(2a,t)] [bye + by sin (Wet) + ¢, 3, sin (3uwpt)
+b,esin(2w,t) + ¢, e T, sin(4u,t) (B-5b)
+ by % sin (3w,t) + ¢,e23, sin (50,t)]

where A0 and A1 are of the order of the semimajor axis, and bO, bl’ b2, b3, Cys

and ¢, are of order 1.

Collecting terms and ignoring those terms of orders e3, Jg , and eng yields

X ~ (A bye + AybjeT,) + (Apby+ Agb, 3,) sin (wst)
+ (Aobze + A bye J,) sin (2a,t) + (Age, T, + Aob3ez+ A;b;J'z) sin (3w,t) (B-6)
+ (Aocze T, + Aib;_e Jz) sin(4w,t)

where primed quantities are combinations of correspouaing unprimed ones.
Thus, the order of magnitude of the extrapolation error may be estimated for
various harmonics, as shown in Table B-1. For a 0. 02 eccentricity and a de-
sired relative error of 107 (~70 meters), the expansion will have to be carried

to at least 3«,t, and possibly to 4wt



Table B-1. Estimated Extrapolation Error for Cartesian Coordinates

Highest Dominant Relative Error Caused
Harmonic Error
Terms e=10 e = 0.001 e=0,01 e=0.1
F #——_—
1 e, Jg, eJy 1073 103 102 1071
2 e, Jp ey | 1073 | 1073 1073 | 1072
3 e3, ed, Jg 1078 1078 10-5 1073
4 e, 24, Jg 10-6 10-6 10~6 1074

Finally, the model for the amplitude as well as mean anomaly will include poly-

lare present. These

nomial terms in time, since drag and long-period effects
can be effectively included in terms such as t, t2, tsin wt, t2 sin ubt, t sin Zwot,
t2 sin 2uyt, etc. The number of such terms required will depend on the span of

interest and on orbital and spacecraft parameters.

Thus, the Fourier-power series described in Section 2, Equation (2-1), is seen

to be a reasonable semiempirical function for Cartesian coordinates.

A similar analysis of equinoctial elements and quaternions shows that the Fourier-
power series expansion is applicable to these forms as well, with certain differ-
ences. The semimajor axis, a, has secﬁlai‘ drag effects and short-period J2

effects. The elements h and k have long-period effects due to the presence of

1Long-period effects enter via trigonometric functions of {1l and w, present in
Rgl(ﬂ.) and Rgl(a.:) . The secular rate in £2, which is about 1 degree/day for
Sun-synchronous orbits, has a dominant effect in Cartesian coordinate ampli-
tude, as a 1-degree rotation of the near-polar EOS orbit plane can cause as
much as a 100-kilometer change in the amplitude of the x or y component.
The effect of a secular rate in « is only felt via corrections of the order of J2.




N and w, secular effects due to the drag effects on eccentricity, and short-period
Jy effects. The elements p and q involve i and £1 and are again subject to long-
and short-period effects. As for the true longitude (L = {1 + w + f), in addition to

its nearly linear growth at a rate (ﬁm + W

ean mean
effects due to both J, and the eccentricity, since f may be written to the third

+ Wy), it has short-period

power in e (Reference 15) as

3 2 3
£ =44 (2e--§-)sinl +-5-:4-°-sin2.0. + %e_ sin30 (B=7)

The major difference between equinoctial elements and Cartesian coordinates is
that the number of harmonics needed in a, h, k, p, and q is independent of the
eccentricity, since only the Iy short-period effects are to be modeled. Only L
involves the effect of eccentricity. Based on the preceding discussion, the extrap-

olation errors for equinoctial elements can be estimated as shown in Table B-2.

Table B-2. Estimated Extrapolation Error for Equinoctial Elements
. Dominant .
Highest Relative Error Caused
Harmonic Error
Terms e=0 e = 0.001 e=0.01 e=0.1

1 e?, J,, edy 1073 1073 1073 1072
2 e3, Jé ed, 1076 1076 10~3 1073
3 e, J2, e2J2 1076 10-6 1076 10™4

The equinoctial elements are seen to offer an advantage over Cartesian coordi-

nates in the number of harmonics necessary in the Fourier-power expansion.




The quaternions involve sines and cosines of one-half the true anomaly, f. Using
the expansion for f given previously, it can be shown that a Fourier-power series
for quaternions will involve only odd half-integral multiples of the orbital frequency.
(The constant term is absent in quaternions.) Thus, a typical equation for a qua-

ternion is

q = sin(i2) cos (B97E) & sin (r2) [cos (252) cos(#/2) + sim(252) sin G12)] (B-8)

The expansion for f (from Equation (B-7)) gives
cos (F/2) = cos [;:- + (e - %3) sinf + ]
% cos (2/2) Ysink] - sin(212) sin[(e- %) sin2 (B-9)
cos (£/2) cos [(e-?) sin ] - sin(l/2) sin (e- 3 ) sin L LD

3
z cos(l/Z)[i - iz(e- %3>z sinzl] - sin(R/2) [(e-%s) sind - % sin’l] o

Products such as sin(£/2) sing and sin(£/2) cos 2L can be written as sums in-
volving sines and cosines of £/2, 34/2, 54/2, etc. When the J, short-period
effect in quaternions arising from the presence of {l and w is combined with the

eccentricity effect in f, the following table of estimated extrapolation errors re-

sults.
Table B-3. Estimated Extrapolation Error for Quaternions
Highest Dominant Relative Error Caused
Harmonic Error
Terms e=10 e = 0.001 e=0.01 e=0.,1
g
1/2 e, Jy el, 1073 1073 1072 1071
3/2 e2, J,, ed, 1073 1073 1073 1072
5/2 e3, 3%, edy 10-6 10-6 1075 1073
7/2 e, 12, &2, 1078 107 107° 1074




In brief, equinoctial elements may be the most suitable orbital coordinates for

extrapolation via a Fourier-power series.

Finally, in the absence of drag, the power series in time can be replaced by ex-
act trigonometric expressions in £ and w, since it is only these long=-period
effects that the power series in time is supposed to model. The epoch values
and mean rates for L and w could be obtained from an averaged Keplerian VOP
orbit generator of the Goddard Trajectory Determination System (GTDS). How-

ever, polynomial terms in time will be needed to model drag effects.



APPENDIX C - SOFTWARE COMPATIBILITY WITH THE
GLOBAL POSITIONING SYSTEM

In examining the ephemeris representations in Section 3, it was implicitly assumed
that ephemerides will be determined, predicted, and uplinked to the spacecraft from
the ground. An alternative under consideration is to provide the spacecraft with the
capability to accept and process input from the Global Positioning System (GPS)
(Reference 3) for onboard orbit determination. This appendix discusses methods

of interfacing this approach with the onboard attitude control software.
C.1 DETERMINISTIC METHOD

Position can be deterministically computed if four GPS satellites are simultaneously
visible. However, this condition cannot be guaranteed prior to 1985, and even after
the system is fully operational, geosynchronous satellites at certain longitudes may
fail to see four GPS satellites at once (Reference 17). Thus, the onboard orbit de-

termination algorithm will probably have to be an estimator.

If a deterministic algorithm were possible, Cartesian positional components would
be known at any desired time (but not into the future, unless an extrapolation scheme
were implemented). However, this would still leave open the problem of determin-
ing velocity and acceleration components. Assuming that some approximate scheme,
e.g., numerical differencing, can be used for velocity and acceleration computa-
tions, the easiest way to use the GPS information in the attitude control cycle would
be to compute quaternions (or direction cosines) and body rates from the Cartesian
coordinates at every interpolation interval.1 The cost of this computation can be
ascertained from the central column of Table 3-2 by subtracting the interpolation
cost. This cost is about 11 milliseconds to obtain A and & and 18 milliseconds to
obtain § and @, with an additional cost of about 26 milliseconds if geodetic rather

than geocentric stabilization is desired (see Appendix D).

lin order to implement this technique in practice, the deterministic algorithm will
have to be augmented by some extrapolation scheme, since a deterministic fix
takes at least 6 seconds.



C.2 REGRESSION METHODS

Since an estimator is more likely to be adopted than the deterministic method,
several approaches to building an orbit estimation algorithm, or filter, are ex-

amined below.

C.2.1 Regression Algorithm Using Cartesian Coordinates

The most common orbit filter uses Cartesian coordinates. The state may include
position, velocity, and even acceleration components, and a simple orbit propa-
gation model such as a Cowell or a Brouwer-Lyddane orbit generator can be in-
cluded. In this case, all nine Cartesian components can be obtained at any desired
time and then converted to A and & (or § and @ ) as was done with the determin-
istic algorithm (with costs of 11 or 18 milliseconds as before). However, another
possibility is to use the filter to obtain the Cartesian components only at grid
points several minutes into the future1 to compute quaternions or equinoctial ele-
ments. The costs in the attitude control cycle in these cases are almost the same
as if the quaternions or equinoctial elements had been uplinked from the ground,
i.e., about 18 (15) and 19 to 22 (19 to 22) milliseconds, respectively, for obtaining
A and & (Ei, @), with an additional 31 and 37 milliseconds, respectively, for geo-
detic control (Appendix D). The core advantage of equinoctial elements will be

translated into an advantage in the frequency of accessing the GPS orbit filter.

The algorithms for conversion from Cartesian coordinates to quaternions and to
& are described in Section 3.3.1. For obtaining quaternion rates, the following

equation can be used:

%4 -Q's QZ %1 Wy
Lz 3 % Uu % wy (c-1)
"3, % % % Wy

" "% % %4 0

q =

1This means that the orbit model will have to include Jo and drag effects, since
the orbit filter must propagate to a 100-meter accuracy over a half-hour span.

C-2



Conversion from Cartesian coordinates to the equinoctial elements p and g
was discussed in the text (Equation (3-17)). To obtain the remaining ele-
ments, the following equations can be used in conjunction with the conversion to

p and q:
L= sin"(s) + 2mn (C~2a)

or

L = tan't(s'/c') + 2mwn (C=2b)

where s’ and ¢’ denote sin L and cos L, respectively, and where n is the cor-
rect number of periods from epoch which must be kept track of with appropriate
logic. The additional equations needed to obtain the remaining elements are the
following: 1

a = .
2¢71. (x2%, yzq-lz) L

DI S (T3

p, * Pzi 9, ° %1
FL= 1-p,+q,5 f,_= 2pq ; ~F3=-2P
9‘13 .FZ; 91_: l+p2_g2; 93= Z%

)

1

ol

h = -é.- -é , k =
The equation for a given above is expandable in a binomial series to five terms.

The equinoctial element rates can be found from (Reference 5)
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If inverse trigonometric functions and logic to count n, the number of periods,
are to be avoided, a modified interface between GPS output and input to the atti-
tude control software may be possible. Instead of the six elements and six rates
given in Equation (C-4), seven elements and seven rates can be used, where L
and L are replaced by s, &, c, and ¢ (where s = sin(L/2) and c = cos(L/2)).

In the grid-point conversion algorithm, the two equations $ = cL/2 and ¢ = -sL/2
will be added. The attitude control software will be modified to interpolate on

the four elements p, q, s, and c¢ and the four rates p, q, s, and ¢, instead of
the three elements p, q, and L. Then the equations s = sin(L/2) and ¢ = cos(L/2)
can be eliminated, and the equation L = 25/c (or L=~2¢/s, if ¢ is close to 0) will
have to be added. The net increase in the attitude cycle time will be about 2/3/4
milliseconds for a 2-/3-/4-point Hermite interpolator. Before adopting this ap-
proach, the interpolation and extrapolation accuracy of s, s, ¢, and ¢ must be
evaluated. (These may be similar to those for quaternions.) If the attitude cycle
calls for direction cosines rather than quaternions, then s'= sinL and c¢'= cos L

could be used in place of s = sin(L/2) and ¢ = cos(L/2).

C.2.2 Regression Algorithm Using Equinoctial Elements or Quaternions

Another approach to interfacing GPS input with attitude control software that em-
ploys equinoctial elements or quaternions would be to build the orbit filter itself

on equinoctial elements or quaternions. This would eliminate the conversion cost




from the attitude control software. The impact of this approach on the orbit filter
must be analyzed. There are two major aspects to this question: (1) the filter
must be supplied with a propagator in equinoctial elements or quaternions, and

(2) the observation and its partial derivatives must be expressed in the selected
coordinates. Some preliminary observations on these two aspects are offered

below.
C.2.2.1 Orbit Propagation

The precision needed in the onboard orbit propagator will depend on the practi-
cable frequency of update using the GPS input. If a high-precision propagator is
desired, the numerical integration of a fairly complex force model may be neces-
sary. This could be done in Cartesian coordinates (Cowell integrator), equinoc-
tial elements, or quaternions. The differential equations in the first two types of
coordinates are available in the literature (References 5 and 18). One approach
for propagation of quaternions is to view the frequencies O = [( -é @'F) s 0, % ]
as gyro rates and integrate them as is standard practice in attitude systems
(Reference 11). Another approach would be to develop equations for the attitude
dynamics of orbital motion. In addition, methods of propagating r and r should
be coupled with integration of quaternions so as to obtain the complete set from

which T and T can be recovered, when necessary.

When employing equinoctial elements or quaternions, conversion to Cartesian
coordinates will be called for by the force model, since drag effects are most
easily expressed in Cartesian coordinates. Finally, a state transition matrix
must be computed. Since the cost of numerically integrating variational equa-
tions is rather high, an analytic two~body (or two-body and J,) transition matrix
will be desirable. Such a matrix is simplest in equinoctial elements. When in-
tegrating in Cartesian coordinates, cross partial derivatives with equinoctial
elements are needed to obtain the transition matrix in Cartesian coordinates.
When using quaternions, a similar approach via equinoctial elements can be used.

Expressions for T in terms of p, q, and L (given in Equation (3-18)) and the
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expression for T:f (given in Equation (C-1)), coupled with the expression for @ in
terms of p, q, L, p, 9, and L (given in Equation (3-24)), can be used to obtain the
necessary partial derivatives. Alternatively, it might be possible to derive an
analytic state transition matrix for § from orbit-dynamical equations expressed
directly in quaternions.1 For a zero-eccentricity orbit, with a two-body model,

such a matrix is given simply by

- -t
08 [U (tz to)] sin [U{tz o) O 0
- sl.n [h) (fz-to)] 05 [U(fz- to) ] O 0
Plit)= ] ] -
t o o e0s [u({; ] [u <t2 t,)] (C-5)
wlt-¢4) wlt-t,)
0 0 sin [ ] cos[ 5 ]

where () = d(tt,) §(t) and w =G/r® = constant. The above form is obtained
either by comparison with the state transition matrix used in attitude systems (Ref-
erence 11) or by using expressions for the quaternions in terms of classical or

equinoctial elements, as given in Section 3.

For a nonzero eccentricity, the situation is more complex since w is not constant.
In the language of attitude dynamics, the system has a nonconstant moment of in-

ertia r2. Using the expansion for r/a in powers of the eccentricity (Reference 15),

which to e3 is
rla = t+2et s (cev2e®)cosl + (-5€°) cos3l + (-3 e¥)eos3L  (C-6)
z ge ) Z 8

the angular frequency @ = G/r? can be written as

w = a% [(14—-%32) - (ze-n-%e’)cosz » ($e*)eos 22 + T’f-'es) c0531-] (C-7

L harmonic oscillator formulation of orbit equations (Reference 19) could possibly
be used to advantage for this purpose.



The state equation for @ partitions, and the equation for q; and q, is

()
2\ (% % (C-8)
A

0/ \3 %2

% 0
. = (A}

%2 2
with a similar equation holding for a5 and q 4

Although w is not a constant, the state transition matrix has the form given pre-
viously in Equation (C~5), since A(t) and f A(t)dt commute (Reference 20), except
. . t
that cos [Q(t t’)} and sin [“’“' ] are replaced by the cosine and sine of f @) dt,

ta

2 2 2
i.e., by the cosine and sine of

t

G in (nt .  (3nt
T [(1+-"2-e2)£ . (2e+—4§e’) smnn) . (_zs:ez) smz(nz"t) . (_:_59_3) s.n;:n )]t (C-9)

0

where n is the mean notion. Since Jo is being ignored, the above expression
may, for consistency, be truncated at terms of the order e or 2 (depending on
the value of e). Alternatively, if an approximate two-body propagator for qua-
ternions can be developed, the state transition matrix @ can be obtained simply

as (Reference 21)

bu Py P %

Paz  Pas ~Bar -Paz -10
dlt,ty = (C-10)
e “@s2 P4y Paq -Paz

Bar Paz  Paz  Peq

with the four independent elements of § given by

9 -q,t0  -q,{te) Q. {t q,(ts) ql( t)
e %) - %4 &) - gz(t") 9,tt) 9, (C-11)
Bz | | -t g lt)  -qalt)  q.lkp) q,®
P q,(6) gyt qﬁ(to) q,(ts) )



If the orbit propagation model does not have to be too precise, then several other
alternatives exist. An analytical two-body or two-body and J, propagation of equi-
noctial elements or quaternions (and r and r) could be used. Again, the propaga-
tion model for the latter could be derived either via equinoctial elements or by
actually developing dynamic equations for orbital quaternions. Another technique
would be to use an empirical propagator for equinoctial elements or quaternions
of the type used in their extrapolation (see Section 2). The orbit filter will then
adjust the coefficients of the Fourier-power series. The advantage of this method
is that the effects of harmonics, drag, and orbital eccentricity are included em-
pirically in the propagator, so that its accuracy is somewhat better than that of
an analytic two-body propagator. Another advantage is that this technique is
equally applicable to geodetic quaternions, for which analytic propagation is cum-
bersome at best. The disadvantage is that the state size (dimension) is greatly
increased, and observability problems may exist. Also, the cost of such an orbit

propagator must be compared with the cost of an analytic propagator.
C.2.2.2 Observation Model

Regardless of the form of the orbit generator, the GPS observation model is most
simply expressible in Cartesian coordinates. Thus, conversion to Cartesian co-
ordinates, as well as explicit partial derivatives of these forward equations, must
be supplied to the observation model. Conversion algorithms from equinoctial ele-
ments, from geocentric quaternions and r and r, and from geodetic quaternions and
H and H to Cartesian position and velocity are given in Section 3 and Appendix D.
Partial derivatives can be obtained from these algorithms by straightforward dif-
ferentiation. Partial derivatives of Cartesian coordinates with respect to equi-

noctial elements are given in Reference 5.



APPENDIX D - SOFTWARE ADAPTIBILITY TO GEODETIC
CONTROL REQUIREMENT

The onboard computation cost of conversion from various forms of orbital des-
cription to a form suitable for use in the attitude control law for an Earth-pointing
mission (such as EOS) was examined in Section 3. It was assumed in this analysis
that the satellite must point towards the Earth's center, i.e., it must be geocen-
trically stabilized. Due to the ellipticity of the Earth, however, this is not equiv-
alent to pointing normally to the surface of the Earth. The maximum angular
deviation is about 3 x 10-3 radians for the EOS orbit. If geodetic stabilization is
desired, for example, in order to minimize atmospheric refraction effects in the
picture-taking process by onboard cameras, then a correction must be computed
to the direction cosine matrix or quaternions as obtained in the text. This appen-
dix examines the computational cost of applying this correction. This cost will

be added to the attitude control cycle cost, since the correction is orbital position

dependent.

The correction can be regarded as a rotation by a small angle

Az -0
where @ is the geodetic latitude and & is the inertial declination = sin~1(z/r)
around an axis normal to the plane formed by the inertial z-axis and the satellite's
position vector T. This definition of the geodetic frame differs somewhat from
that in the ADGEN System, where the new z-axis is normal to T and to the new
x-axis. For a perfectly polar orbit, the two definitions coincide. This axis has
components (%,-%,O) in the inertial frame, where o = ¢/x*+y? = ¢/ri-az?,
In order to represent the net rotation as two successive rotations, the components
of this axis must be found in the orbital frame. This can be done by premultiplying

the above vector by the A matrix; the result is

(0, =% %35 %023) (D-1)



The angle of rotation A can be expressed as a power series in e% (i.e., the

Earth figure eccentricity squared, which is approximately 6.7 x 10‘3) as

A=A el + Dy + 0(ef) (D-2)
where a
A = —f— sin8 cos8

(D-3)

2
1 & .3 g . 2 . g
4, = T sin & cosd + = smScosS(cos §-sin 8)

and where ap = the Earth's equatorial radius = 6378. 14 kilometers, sin § = z/r,

and cos8 = ,O/ r. The maximum value of A is approximately

@

1 qg 2
Aqu z T.E € (=3x 10-3 radians for an EOS orbit)

The terms ignored in the above expansion are of the order of e% =3x10"7.
The expansion was obtained by a series solution to this equation for the geodetic
latitude ¢, obtained by requiring that the normal to the ellipsoid pass through

the satellite position, x, y, z,

£+ (-2p2) tand + [£%(1-e) + p*- al e} tan®s (D-4)
v [-2p2(1-€2)]tanF + p?(1-e2) tantgp = O

Knowing the axis of rotation and the angle of rotation, it is straightforward to
correct either the quaternions or the direction cosine matrix. The corrected

body rates can be obtained in terms of A (the derivative of A in Equation (D-2)),

The computational cost of the geodetic correction is shown in Table D-1.1 The

second column in each entry indicates the additional quantities that must be

1The geodetic frame attitude could also be obtained by using an iterative process
(see subroutine XYZPLH of GTDS or subroutine SUBSAT of the ADGEN System).
Preliminary tests indicate that the amount of computation involved in this meth-
od is considerably more than that in the series expansion method described above.
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transmitted specifically for computing the geodetic correction. An additional core
storage of about 1K words will be incurred for each quantity over a 4-day span.
Columns four through six indicate the arithmetic operations involved in comput-
ing the correction. In the last three columns are shown: (1) the corresponding
time estimates for the geodetic correction, (2) the basic time estimates (from
Table 3-2), and (3) the total contribution to the attitude control cycle. In these
estimates, a three-point Hermite interpolator is assumed. It can be seen that

the geodetic control requirement adds significantly to the attitude cycle time.

As for the choice of orbital description, quaternions still have a slight edge in
terms of time over Cartesian or equinoctial elements, but the proportionate dif-

ference is less pronounced.

Another possibility is that the corrected (i.e., geodetic) quaternions and rates
could be transmitted to the spacecraft, thereby reducing the onboard cost from
46 to 16 milliseconds. Then, recovery of position and velocity could be accom-
plished in the following manner when necessary (Reference 18 and subroutine
PLHXYZ of GTDS). Two additional quantities, the height H and its rate H, must
also be transmitted in place of r and t in the case of geocentric control. The
equations given below depend only on the first row of A, and therefore they are
valid even when the geodetic frame is defined as in the ADGEN System. The

first row of A is determined as

2

11'%1._12-‘%32_%:
Qg = 2 (‘h?z . 74) (D-5)
24,85~ 4294

1)
t)

Next, the intermediate quantity

2 L2
N = ag(1-ekal,) (D-6)



is obtained by a series expansion in e Then, the expressions

b DN

(D=17)

give the position, and the velocity is given by the equations
ay = 4948+ 9a40)
ayp z(%x.éz * ‘lzéz * 9544 * 948s) (D-8)
Oy = z(‘h‘ia * 3,q, - 9,44 - 9482)

. _ 2 . Na

N = egl; anzg

N' = N+H (D-9)
7. Ve 2.

N - N - CeN

and
x = a.nl\'1’+ a'.nN'
y = QN+ ap,N (D-10)

B o= 4N+ AN
The operations required are 40 multiplications and 25 additions; the time required
is about 10 milliseconds. To this must be added the cost of interpolation of the
10 quantities §, §, H, and H. This cost is about 9/16/22 milliseconds for a 2-/
3-/4-point Hermite interpolator.

Of course, before adopting the preceding approach, the interpolation and particu-
larly the extrapolation accuracy of geodetic quaternions must be evaluated. As is
seen from the expansion for A, for near-polar orbits the geodetic correction may
be regarded as a periodic effect of the order of magnitude 3 x (J, correction) or
about 20 kilometers, with one-half the orbital period, i.e., the same period as
for the J, correction. (The next higher harmonic has one-fourth the orbital per-

iod and an amplitude of 0.4 kilometers.) Thus, any extrapolation model that is
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designed to incorporate the J_ effect will probably absorb the geodetic correction

as well. Similarly, the desifable interpolation grid interval for geodetic quater-
nions will probably be nearly the same as that for geocentric quaternions. Finally,
a GPS orbit filter based on geocentric quaternions will carry over smoothly to one
based on geodetic quaternions (see Appendix C), provided that a Fourier-power

series propagator model is used.
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